
Microservices Orchestration with
the SPARKL® Sequencing Engine

SPARKL® Limited 2017

Microservices are lightweight, semi-autonomous, self-sustaining pieces of logic which operate in
parallel and collaborate through network-based message passing. The concept is not a new one, but
it’s an approach that’s being used more and more in enterprise architecture.

For example, challenger bank Monzo have announced they had made the unusual decision to build
their backend as a collection of distributed microservices. Larger enterprises normally build their
applications on a single technology platform, called monoliths. These are easy to build, but harder to
manage over time.

At SPARKL, we call microservices “black boxes”. They do something, but it doesn’t really matter how.
The difficulty comes when you combine them. It’s important to understand the various behaviours
of the pieces of your system as it gets bigger. That’s a typical problem for any bank, which can have
thousands of applications running over tens of thousands of systems.

By splitting a centralised system into microservices, companies like Monzo have a choice when it
comes to building a service on their applications. Developers are able to work on different areas of an
application without interrupting whatever is going on elsewhere. This sets up an ongoing, day-to-day
relationship with the technology and its users.

The main principles of microservices are:

• Loose-coupling - there should be limited dependencies between microservices, so changes
made to one service shouldn’t have an impact on other services, nor should there be chatty
communication between services, though they should be asynchronous.

• Smart end-points - the “keeping the smarts (i.e. logic) in the end-point whilst keeping the
middleware dumb” principle of microservices. Services should be built on minimal assumptions
and constraints concerning the nature of the environment in which they operate.

• High cohesion - microservices should be as small as possible while still maintaining high
cohesion. Related logic should be placed within the same microservice, whilst unrelated logic
should not be. The cost to replace small services with a better implementation, or delete them
altogether, is much easier to manage.

With microservices, every business function can be customised - the system can implement different
quality-of-service practices for the various functions.

Many downstream services can be used to satisfy a business transaction, which starts with a call
on a frontline service. For example, many checks and other actions could be taken when a customer
registers for an online service.

When an error occurs in the registration process, the ops team drills down and looks at individual calls
to downstream services, leading to the error. The team correlates log entries corresponding to the
same transaction, finding the specific call to a downstream service that caused the transaction to fail.

Being able to correlate events that take place in the satisfaction of a transaction can be particularly
challenging with microservices, as the logic is dispersed potentially between several services.

In the following brief, we will indicate how a transaction-based audit trail, showing correlations
between events, is made available through process-based data provenance.

Introduction to Microservices

1

https://monzo.com/blog/2016/09/19/building-a-modern-bank-backend/
http://www.sparkl.com/

SPARKL is powerful technology for managing the behaviour of distributed systems. It’s primarily
used for orchestration, a.k.a sequencing. It records the operations as data events, and sequences
them together to satisfy a transaction.

A user can configure SPARKL in application terms through services, along with various operations that
can be performed on those services. Whenever a transaction is initiated, SPARKL plans its satisfaction
using the specified application configurations. It routes messages between microservices according
to these plans.

Service orchestration in SPARKL focuses primarily on supporting application flows. This means that,
in the limit, service infrastructure may be provisioned and torn-down per individual call made against
SPARKL, as depicted in Figure 1. In reality, there will be a balance between per-operation service
artefacts, those that last for the lifetime of the overall service deployment, and others in between.

SPARKL for Microservices Orchestration

each call of any operation

compute containers

may lead to the creation
of new containers at the
backend

or, each call from a
particular user

user a

user b

may be served by
the same but distinct
container/s at the
backend, existing for the
whole service lifetime

or, something other
determines the calls

other a

other b

may be served by the
same but distinct
container/s ...

or, calls to any operation may be served by the
same container/s existing
for whole service lifetime

Figure 1 - Application-flow based
service orchestration in SPARKL

Complete flexibility regarding when and how
compute power is dedicated to handling
transactions

2

SPARKL®

Provisioning per application-flow works for:
• Individual transactions that are long-running (reducing infrastructure set-up latency and costs)
• Per-user or some other determinant, in order to fine-tune performance
• Contexts that are sensitive in terms of its security requirements, for which clean infrastructure

would be worthwhile.

Application-flow provisioning works particularly well in the microservices model because of the fine-
grained nature of the services themselves. SPARKL can reason if a microservice is needed at all
- e.g in the satisfaction of a transaction; whether the number of instances of a microservice should
be scaled out because of long transaction times; or to implement different qualities of service for
different users at different times, for example.

A transaction can be executed on a system, using SPARKL, according to these two patterns:
• The solicit->response pattern describes the solicitation of a transaction to achieve a desired

state, reflected in the response.
• The notify->consume pattern describes the handling of an event, of which SPARKL has been

notified. SPARKL eagerly looks to inform as many consumers as it can of the event occurrence, even
performing intermediate operations in order to reshape the original event prior to consumption.

solicit_balance
inputs

response

response_balance

request_info

reply_info

request_balance

reply_balance

Figure 2 - SPARKL sequencing the satisfaction
of a solicit transaction

Essentially, the first is a synchronous pattern,
and the second, an asynchronous pattern.

Figure 2 shows a possible instantiation of the
solicit->response pattern.

SPARKL will look to satisfy the transaction,
embodied as a solicit data event sent to SPARKL,
by sequencing (request) operations on various
service end-points.

The solicit has a single possible response, other
than error, which is a value for the Red data field.
The solicit is supplied with Blue and Green data
field values.

SPARKL sees that, in order to satisfy the solicit,
it needs to sequence two operations. This is
so that a value for the Yellow data field can be
obtained given a Green data field value.

Then, Blue and Yellow field values are given to
the request_balance operation, offered by
a back-end service. This service gives back a
value for the Red data field, which is routed back
to the original caller, as a response data event.

3

notify_event

inputs
reshape_green

Figure 3 - SPARKL sequencing the
satisfaction of a notify transaction

reshape_yellow

consume_yellow

consume_blue

In summary, SPARKL plans out the execution of operations to satisfy a solicit event, such that the
operations yield sufficient data values for one of its responses.

The orchestration taking place is captured as a mix, which is a small, self-contained definition of
solicit and request operations on services and data fields.

The satisfaction of the solicit transaction entails six data events, which are logged for auditing
purposes by SPARKL:
• the initial solicit, and its response
• two sets of request and reply events.

Figure 3 shows a possible instantiation of the notify->consume pattern. When an event notification
is received by SPARKL, the service contributing consume_blue (in the implied mix) can immediately
be called. This is because the Blue data field is immediately available, and is sent in a consume data
event to the service.

SPARKL works out that the particular service
contributing the consume_yellow operation can
also be called if SPARKL first inserts the reshape_
green operation in order to elicit the Yellow data
field.

The purpose of request operations, in the notify-
>consume pattern, is to reshape notified events
prior to consumption by service end-points.

The notify->consume pattern leaches into the
solicit->response pattern, but not vice-versa.

Consume operations may be invoked in the course
of satisfying a solicit transaction to provide field
data from the ongoing transaction.

This data is, for informative purposes, to be
consumed by the service end-point.

Thus, there is a solicit->consume aspect to
the solicit->response pattern.

4

An ideal application of SPARKL is in the orchestration of microservices. Communication between
services happens mainly according to the notify->consume pattern of SPARKL, promoting loose-
coupling, although the initiating call may be a solicit->response.

SPARKL further encourages loose-coupling as its fieldset-based semantics, which naturally allows
for changing service APIs. For instance, an operation originally may reply with Red and Blue data
fields. If a consumer requires just Red, then it still gets called by SPARKL if the operation changes to
returning Red and Green fields, as it just needs Red.

SPARKL is able to push control logic into the services themselves, as part of the put-the-smarts-in-
the-end-points philosophy of microservices.

Figure 4 - SPARKL-based microservices

This helps with resiliency and loose-coupling. An instance of SPARKL could potentially be placed in
every microservice, as depicted in Figure 4, to orchestrate operations and communications between
processes running on the microservice, and other microservices.

Given that SPARKL is baked into the microservices themselves, there is natural redundancy and
resiliency in the approach - if one SPARKL is not currently available to do load balancing, or instruct
autoscaling, say, then another steps in. There is no need for a centralised controller.

Developers of individual microservices produce individual interface definitions as SPARKL mixes.
These mixes can be arbitrarily composed to describe the behaviour of an overall system, leaving
glue logic out of the process - a simple cut-and-paste of mix definitions to create compositions just
works. Again, this means that the smarts are owned by the services themselves.

In a legacy setting where only some of the system components are implemented using microservices,
a sprinkling of SPARKL is enough to immediately see benefits with respect to capturing data
provenance, from which insights can be drawn through analytics. We offer a solution where data
provenance can be captured against both non-SPARKL and SPARKL-based service components.

Data provenance is concerned with tracking the flow of data through service end-points including
how it is shaped. We often want to assess this at a transactional granularity, hence, we use the term
transaction-oriented data provenance.

Banks are obliged to report on every aspect of their operations, yet today’s technology’s stack simply
doesn’t provide the detailed, comprehensive log data required to satisfy the demands of regulators
and shareholders.

There are two types of data provenance that SPARKL implements for microservices, both highly
useful for this kind of problem. Process Provenance captures the history of operations carried out
on system components as well as the resulting manipulation of data records stored on systems. It
captures specific events of reading and writing of such data.

With Query Provenance, the satisfaction of a query made on data stored by a system requires
subqueries to be carried out across many disparate data sources, involving one or more ETL layers,
different database views or rules engines.

• Query provenance is the descriptions (in terms of metadata) of the data records used to satisfy a
query, and a graph of how the data records are combined for this purpose.

• Queries are satisfied rather than an account of specific queries made against a system, which
would fall under process provenance.

• The metadata of any data record may include the process provenance which details how the data
record has thus far been shaped by the back-end systems.

5

legacy

snooping

legacy

snooping

legacy

routing

Figure 5 - Supporting legacy systems components and SPARKL microservices

ESB
(possibly
existing)

Any system architecture - whether it’s using microservices or not - needs to support reporting along
these lines.

There are the following possibilities when deploying SPARKL in a microservices context, as depicted
in Figure 5, where instances of either may exist for any particular system.

6

SPARKL-based microservices can communicate with other microservices via standard SPARKL
sequencing and Erlang RPC mechanisms, moving from one SPARKL node to another.

SPARKL can be baked into a microservice to directly orchestrate operations on the microservice, as
well as forward solicitations or notifications from the microservice. It logs all these operations with
an audit trail.

In some cases, the system might use a microservice or a legacy system component without SPARKL.
Here, a shadow SPARKL microservice would be deployed for the system in order to extract information
for provenance tracking.

We make use of a message bus solution to act as a message protocol interchange mechanism. The
legacy system component is coerced to communicate directly with the bus. The choice of bus is
made based on the system components it needs to support in terms of the protocols they use. E.g.
RESTified HTTP, other HTTP, or WSDL/SOAP.

Two further options are possible.

• The shadow microservice is limited to snooping on traffic routed by the message bus. The
microservice will oversee (possibly offline) processing of these messages, extracting information
for process provenance. This can occur when two non-SPARKL components are communicating
directly through the message bus.

• Or the SPARKL-based shadow microservice serves wire the non-SPARKL system component up
with other SPARKL-based microservices. In this case, the communication gets switched into the
SPARKL network, shown on the left of Figure 5. The mix enabling this configuration will capture
how the traffic to and from the component should be marshalled into SPARKL operations. Once
the traffic is captured as SPARKL operations, full SPARKL-based logging follows.

So even for legacy system components, which use a range of protocols, we immediately get value in
terms of process-based data provenance by sprinkling a little SPARKL.

7

Every microservice provides a specification of health checks (as another mix) which SPARKL routinely
applies to ensure the health of the service. In the event that a microservice instance is misbehaving
according to the execution of a health check mix, SPARKL will replace it.

In summary, SPARKL is a complete legacy which can be employed immediately into enterprises and
start providing value, with minimal overhead. It’s a complete legacy system, where process

• SPARKL supports fine-grained (per-user, per-some other criterion) provisioning, load balancing
and auto-scaling of microservices. It is capable of enforcing SLAs because of this.

• SPARKL supports Devops and continuous delivery patterns typical of a microservices orchestrator,
including circuit breakers, green/blue deployments, A/B testing and canary releases.

• SPARKL is scalable software, implementing a distributed intelligence pattern where a SPARKL
router is placed into every microservice.

• SPARKL natively supports Erlang, Python and script and browser-based nanoservices.

Bonus - SPARKL doesn’t prescribe technology stacks, but it is technology-agnostic. In Figure 6, we
show one possible technology integration stack with SPARKL. One is a business process execution
stack, and the other is an analytics stack.

SPARKL
transaction logs

Logstash-collected
infrastructure logs

Execution Analytics

Figure 6 - Example technology integration with SPARKL for both
Process Execution and Analytics with respect to this execution,
including over audit trails

HAProxy

SPARKL

Mesophere

Docker

SlamData Kibana

https://www.elastic.co/products/logstash
http://www.haproxy.org/
https://mesosphere.com/
https://www.docker.com/
https://www.elastic.co/products/kibana

SPARKL® Limited 2016SPARKL® Limited 2016

Need more info? Drop us an e-mail at talk@sparkl.
com

See SPARKL tutorials and demos at
sparkl.com/docs

Let’s talk

SPARKL® and Clear Box® are registered trademarks of SPARKL Limited in the UK, EU and US. Portions of the SPARKL Sequencing Engine and its applications are patent pending in the UK, EU and US.
Copyright © 2017 SPARKL Limited UK Reg 07902278

