
Technology Overview

SPARKL®
Sequencing Engine

Dr Andrew Farrell
Software & Research Engineer

SPARKL® and Clear Box® are registered trademarks of SPARKL Limited in the UK, EU and US. Portions of the SPARKL Sequencing Engine and its applications are patent pending in the UK, EU and US.
Copyright © 2017 SPARKL Limited UK Reg 07902278

Introduction to the SPARKL Sequencing Engine
The SPARKL® Sequencing Engine is powerful technology for managing the behaviour of
distributed systems, bringing transparency into the operations of enterprise and industrial
systems. It brings reason to the provisioning of infrastructure used for implementing
services, capturing application-level and infrastructure-level event logs in a uniform
manner.

This enables activities such as anomaly detection and root-cause analysis, using clean
event data across all layers of the service stack.

Reasoned Provisioning

SPARKL determines the actions that should be performed on service end-points (including
creation and tear-down of the service artefacts themselves), and thus what data should
flow between end-points.

A user can configure SPARKL in application terms through the definition of services,
along with various operations that may be performed on those services. Whenever a
transaction is initiated, SPARKL will plan its satisfaction using the specified application
configurations. It will route messages between services according to these plans.

It tracks the transaction-based provenance of operations on end-points as well as the
data that flows between them, as part of its reasoned logging approach. This is essential
for requirements in regulatory compliance in banking, for example.

3

4

Microservices
The use of microservices in the implementation of systems is increasing. Companies
such as Netflix and Paypal were using older, more monolithic architectures, which made
it difficult for them to add new functionality to their systems, and thus decided to adopt a
more loosely-coupled approach.

Software developer and blogger Martin Fowler describes microservices as:

“...An approach to developing a single application as a suite of small services, each running
in its own process and communicating with lightweight mechanisms.

These services are built around business capabilities and independently deployable by fully-
automated deployment machinery. There is a bare minimum of centralised management
of these services, which may be written in different programming languages, and use
different data storage technologies.”

Microservices should be as small as possible while still maintaining high cohesion
overall - that is, related logic is placed within the same microservice, whilst unrelated
logic should not be. This results in a typical layout according to business function at a
fine level of granularity.

The use of microservices allows developers to better align the system architecture to the
organization of the enterprise using the system. Each business function can be treated in
a customised way - the system may implement different quality of service practices for
the various functions, implemented as microservices.

The advantages of microservices are many: increased system resilience, fine-grained
scaling, function replaceability and flexible composability, to name a few.

An ideal application of SPARKL is in the orchestration of microservices. The Sequencing
Engine can reason when a microservice is needed at all - e.g. in the satisfaction of a
transaction, or whether the number of instances of a microservice should be scaled out
because of long transaction times.

http://in the implementation of systems is increasing.

Service orchestration in SPARKL is primarily about supporting application flows. This
means that, in the limit, service infrastructure may be provisioned and torn-down per
individual call made against SPARKL, as depicted in Figure 1. In reality, there will be a
balance between per-operation service artefacts, those that last for the lifetime of the
overall service deployment, and others in between.

each call of any operation

compute containers

may lead to the creation
of new containers at the
backend

or, each call from a
particular user

user a

user b

may be served by
the same but distinct
container/s at the
backend, existing for the
whole service lifetime

or, something other
determines the calls

other a

other b

may be served by the
same but distinct
container/s ...

or, calls to any operation may be served by the
same container/s existing
for whole service lifetime

Figure 1 - Application-flow based
Service Orchestration in SPARKL

there is complete flexibility regarding when
and how compute power is dedicated to
handling transactions

Provisioning per application-flow may make sense for:
• Individual transactions that are long-running (thus reducing infrastructure set-up latency

and costs)
• Per-user or some other determinant, in order to fine-tune performance
• Contexts that are sensitive in terms of its security requirements, for which operating in

the context of clean infrastructure would be advantageous.

5

SPARKL®
Sequencing Engine

Microservice Orchestration with Data Provenance

Application-flow provisioning works particularly well in the microservices model because
of the fine-grained nature of the services themselves. SPARKL is able to reason when
a microservice is needed at all - e.g. in the satisfaction of a transaction, whether the
number of instances of a microservice should be scaled out because of long transaction
times, or to implement different qualities of service for different users at different times.

A transaction can be executed on a system using SPARKL, according to these two
patterns:
• The solicit->response pattern describes the solicitation of a transaction to

achieve some desired state, reflected in the response.
• The notify->consume pattern describes the handling of some event, of which

SPARKL has been notified. SPARKL eagerly looks to inform as many consumers as
it can of the event occurrence, even performing intermediate operations in order to
reshape the original event prior to consumption.

Essentially, the first is a synchronous pattern, and the second, an asynchronous pattern.

Figure 2 shows a possible instantiation of the solicit->response pattern.

solicit_balance
inputs

response

response_balance

request_info

reply_info

request_balance

reply_balance

Figure 2 - SPARKL sequencing the
satisfaction of a solicit transaction

SPARKL will look to satisfy the transaction,
embodied as a solicit data event sent
to SPARKL, by sequencing (request)
operations on various service end-points.

The solicit has a single possible response,
other than error, which is a value for the
red data field. The solicit is supplied with
blue and green data field values.

SPARKL sees that, in order to satisfy the
solicit, it needs to sequence two
operations.

Now a value for the yellow data field can
be obtained given a green data field value.

Then, blue and yellow field values may
be given to the request_balance
operation, offered by a back-end service.

This service gives back a value for the
red data field, which is routed back to the
original caller as a response data event.

6

SPARKL plans out the execution of operations to satisfy a solicit event, such that the
operations yield sufficient data values for one of its responses.

The orchestration that takes place is captured as a mix, which is a small, self-contained
definition of a solicit and request operations on services and data fields.

The satisfaction of the solicit transaction entails six data events which are logged for
auditing purposes by SPARKL:
• the initial solicit and its response;
• and two sets of request and reply events.

Figure 3 shows a possible instantiation of the notify->consume pattern. When an
event notification is received by SPARKL, the service contributing consume_blue (in the
implied mix) may immediately be called. This is because the blue data field is
immediately available, and is sent in a consume data event to the service.

SPARKL works out that the particular service contributing the consume_yellow
operation may also be called if SPARKL first inserts the reshape_green operation in
order to elicit the yellow data field.

notify_event

inputs
reshape_green

Figure 3 - SPARKL sequencing the
satisfaction of a notify transaction

reshape_yellow

consume_yellow

consume_blue

The purpose of request operations, in the
notify->consume pattern, is to reshape
notified events prior to consumption by
service end-points.

The notify->consume pattern leaches
into the solicit->response pattern,
but not vice-versa.

Consume operations may be invoked
in the course of satisfying a solicit
transaction to provide field data from the
ongoing transaction.

This is data to be consumed by the service
end-point for informative purposes. There
is thus a solicit->consume aspect to
the solicit->response pattern.

An ideal application of SPARKL is in the orchestration of microservices. The
communication between services happens mainly according to the notify->consume
pattern of SPARKL, promoting loose coupling, although the initiating call may be a
solicit->response.

7

SPARKL further encourages loose coupling as its fieldset-based semantics, depicted
above, naturally allows for changing service APIs. For instance, an operation originally
may reply with red and blue data fields. If a consumer requires just red then it will still
get called by SPARKL if the operation changes to returning red and green fields, as it just
needs red.

It’s preferable to push control logic into the services themselves, as part of the put the
smarts in the end-points philosophy of microservices.

This helps resiliency and loose coupling. An instance of SPARKL potentially could
be placed in every microservice, as depicted in Figure 4, to orchestrate operations
and communications between processes running on the microservice, and other
microservices.

Figure 4 - SPARKL-based Microservices

Given that SPARKL is baked into the microservices themselves, there is natural
redundancy and resiliency in the approach. If one SPARKL is not currently available to do
load balancing or instruct auto-scaling, for example, then another steps in. There is no
need for a centralised controller.

Developers of individual microservices produce individual interface definitions as SPARKL
mixes. These mixes can be arbitrarily composed to describe the behaviour of an overall
system. There is no need for any glue logic - simple cut-and-paste of mix definitions
to create compositions just works. Again, this means that the smarts are owned by the
services themselves.

In a legacy setting where some of the system components will be implemented using
microservices and some not, a sprinkling of SPARKL is enough to immediately see
benefits with respect to capturing data provenance from which insights can be drawn
through analytics. We offer a solution where data provenance can be captured against
both non-SPARKL and SPARKL-based service components.

Data provenance is concerned with tracking the flow of data through service end-points
including how it is shaped. We often want to assess this at a transactional granularity;
hence, we use the term transaction-oriented data provenance.

8

There are two types of data provenance that SPARKL implements for microservices,
both of which are highly useful. When implementing Governance, Compliance and Risk
control mechanisms such as Conduct Risk assessments, there are many important
questions posed around how data flows through systems (process provenance) and the
sources of data used to arrive at values submitted in - e.g. compliance reports (query
provenance).

Process Provenance captures the history of operations carried out on system
components as well as the resulting manipulation of data records stored on systems. It
captures specific events of reading and writing of such data.

• With SPARKL, process provenance provides support for the kind of drill-down event

correlation described in the overview section.

Query Provenance
• The satisfaction of a query made on data stored by a system may require sub-queries

to be carried out across many disparate data sources, involving one or more ETL
layers, different database views or rules engines.

• Query provenance is the descriptions (in terms of meta-data) of the data records used
to satisfy a query, and a graph of how the data records are combined for this purpose.

• It is therefore a statement of how, in principle, queries are satisfied rather than an
account of specific queries made against a system, which would fall under process
provenance.

• The meta-data of any data record may include the process provenance which details
how the data record has thus far been shaped by the back-end systems.

Any system architecture, whether implemented using microservices or not, will need to
support some degree of reporting along these lines. The use of SPARKL gives a mature
data provenance solution, with minimal integration overhead.

In being able to support microservices that do not use SPARKL, we satisfy the criterion of
not prescribing technology stacks for microservices.

In reality, an enterprise will settle on the choice of an orchestration tool, such as SPARKL,
and seek to craft their microservices accordingly. It’s possible that the enterprise will
adopt some third party microservices, in which case a technology-agnostic approach
remains important. SPARKL also delivers on that criterion.

Each microservice provides a specification of health checks (as another mix) that SPARKL
should routinely apply to ensure the health of the service. In the event that a microservice
instance is misbehaving according to the execution of a health check mix, SPARKL will
replace it.

9

There are a number of technology integrations that are possible with SPARKL. One ex-
ample is shown in Figure 5.

SPARKL
transaction logs

Logstash-collected
infrastructure logs

Execution Analytics Figure 5 - Example technology integration with
SPARKL for both Process Execution and Analytics
with respect to this execution, including over Data
Provenance trails

• HAProxy for high availability and initial load balancing
• Marathon Mesophere for docker cluster-based scheduling
• Docker for microservice container execution
• Logstash for collection of infrastructure logs from disparate environments
• Slamdata and Kibana for visualization, analytics and business reporting

In summary, SPARKL can be employed immediately into enterprises and start providing
value, with minimal overhead:

• It is a complete legacy solution, where process-based data provenance can be extracted
from the operations of existing components, as well as from new SPARKL-based
microservices.

• SPARKL supports fine-grained (per-user, per-some other criterion) provisioning, load
balancing and auto-scaling of microservices. It is capable of enforcing SLAs because of
this.

• SPARKL supports DevOps and continuous delivery patterns typical of a microservices
orchestrator, including circuit breakers, green/blue deployments, A/B testing and canary
releases.

• SPARKL is scalable software, implementing a distributed intelligence pattern where a
SPARKL router is placed into each microservices.

• SPARKL natively supports Erlang, Python and Prolog-based nanoservices.

10

HAProxy

SPARKL

Mesophere

Docker

SlamData Kibana

Consider these examples:
• Traffic signals responding automatically when sensing an approaching ambulance to

let it through congested traffic
• Determining the occurrence of a break-in or a fire in a smart building, and taking

appropriate mitigations
• Real-time confidence scoring to assess in advance the potential for engine problems

on an aeroplane, based on component histories

These examples are all in the realm of the Internet of Things (IoT), where a multitude of
sensors produce a mass of data that we need to make sense of in real-time.

But by shipping sensor data off to the centralised compute facilities in the cloud,
particularly when the necessary transfer bandwidth may not exist, the connection may
be intermittent or have too high a latency, we cannot achieve realistic goals in IoT.

All of these examples require, to one degree or another ,a collective intelligence that isn’t
reliant on remote decision-making. This question belies the true foggy nature of IoT. IoT
is about computing, on the edge, in the fog.

Edge computing

“Edge Computing is pushing the frontier of computing applications, data, and services
away from centralized nodes to the logical extremes of a network. It enables
analytics and knowledge generation to occur at the source of the data.”

Fog computing

“Fog computing is an architecture that uses one or a collaborative multitude of near-
user edge devices to carry out a substantial amount of storage, communication (rather
than routed over the internet backbone), and control, configuration, measurement and
management.

This is in contrast to these functions being carried out primarily in cloud data centres.”

The principal requirement for IoT, given its foggy nature, is to empower controllers which
are close to the source of sensor data to make sense of that data; then, to build out
controller networks so that aggregate decisions can be made, and aggregated views of
data are presented.

Thus, the aim is to make decisions locally but hierarchically; when a decision cannot be
made locally, it is punted up the chain to the next level of aggregation.

SPARKL provides this capability seamlessly through distributed intelligence.

11

Distributed Intelligence

https://en.wikipedia.org/wiki/Edge_computing
https://en.wikipedia.org/wiki/Fog_computing

Through distributed intelligence, every SPARKL controller is endowed with a local
projection of the desired system state, and the controller continually seeks to achieve
that, based on its monitoring of local state and actions that it has available.

Additionally, SPARKL is able to orchestrate multiple processes at the same time, to allow
for operational adaptability. For example, if a fire detection system fails, the temperature
sensors for the HVAC system can switch into emergency stand-by mode and feed data
into the fire detection system, ensuring safety of the building’s occupants.

This would essentially be a network of sensors serving multiple purposes into which
Internet of Things applications subscribe to for data. A SPARKL mix is the ‘Data-as-a-
Service’ that gives this capability with localised analytics.

The Internet of Things landscape is rich in examples where a solution based on local and
hierarchical distributed intelligence would be desirable. Some IoT contexts include:
• Smart Cities - Smart Parking, Smart Lighting, Smart Roads, Structural Health

Monitoring, Surveillance, Emergency Response
• Environment - Weather Monitoring, Air Pollution Monitoring, Forest Fire Detection,

River Floods Detection
• Energy - Smart Grids, Renewable Energy Systems, Prognostics
• Logistics - Routing Generation & Scheduling, Fleet Tracking, Ship Monitoring, Remote

Vehicle Diagnostics
• Agriculture - Smart Irrigation, Greenhouse Control
• Industry - Machine Diagnosis & Prognosis, Indoor Air Quality & Monitoring, Offshore

Installations, such as Oil Rigs and Finite State Machines
• Smart Enterprise - Site Services and Building Management
• Consumer - Connected Autonomous Vehicles, Home Automation & Insurance

By way of example, consider how SPARKL would handle the breakout of a fire in an office
with several different types of sensors:

Two types of smoke detectors reporting anomalous readings of a fire trigger an alarm.
SPARKL is notified locally of the fire

A fire event is propagated to the floor controller and onto a building controller, the
appropriate level to communicate to the alarm system and set off the alarm

Human presence information for the office and surrounding floors, in aggregated form,
is made available by the building controller on a SPARKL dashboard to a Site Services
operator, so that the fire department will know where to concentrate their search and
fire-fighting activities.

Above all, the controllers will make changes to their local environment based on local
information, without decisions being made by a centralised controller.

Dot-matrix signs showing the best way out to humans that may be trapped would have
their message customised by local controllers.

12

SPARKL sits at the heart of operations, both in Enterprise Computing and the IoT. As we
can see in Figure 6, the technology presents a spoke-like architecture where managed
service artefacts hang off spokes coming from SPARKL.

shared websocket
connection

tabservers

browser - user A

tabservers

shared websocket
connection

browser - user B

service endpoint
websocket etc

service: any of the
service types shown
here, acting as a
simple proxy to other
logic doing actual
work

proprietary
connection type

logic providing the
backbone of service
- such as a database
server - controlled by
SPARKL via a proxy
service

SPARKL®

service endpoint
websocket etc

service: process in
docker container on
AWS virtual host

service: process
directly on same
physical / virtual host

service
endpoint

websocket
etc

service: process
directly on same
physical / virtual host service endpoint

connection via
websockets,

amqp, soap etc

Figure 6 - SPARKL at the heart of
enterprise and industrial ops

A SPARKL service artefact, or simply a service, is a compute process (e.g. a Linux process,
browser thread etc) that initiates a secure websocket-based (or other) connection with
SPARKL under certain conditions which are dependent on the nature of the process.

There are many ways in which a SPARKL service may be realized. In Figure 6, we see
SPARKL services that are:
• browser-based compute threads (sharing a common websocket connection)
• Linux processes running:
 - directly on a physical/virtual machine host, or
 - within a docker container sandbox either running on the local SPARKL router
 machine, or on machines in AWS.

13

SPARKL at the Heart of Operations

A service may also be a simple proxy routing data to and from some other compute logic,
according to some non-SPARKL protocol. The example shown in the purple box in Figure
6 is a proxy service responsible for storing and retrieving data from a database server.

There are many options. The only requirement is that the process initiates a websocket
(or other) connection with SPARKL, following a specific protocol, in order to register itself
with SPARKL.

Once this occurs successfully, it serves as a new service end-point that SPARKL may
route data to/from, according to operations that are defined in a SPARKL mix, by an
author of SPARKL mixes, called a mixologist. A SPARKL mix is an orchestration scope,
limiting which operations may be sequenced in the execution of a transaction.

The data flows across the various connections, shown in Figure 6, are logged in a common
format and are available for subsequent data analytics and mining.

14

solicitifield1, ...
ifieldn

response1
ofield11, ...
ofield1n1

responseM

ofieldM1, ...,
ofieldMnM

requestifield1, ...
ifieldn

reply1
ofield11, ...
ofield1n1

responseM

ofieldM1, ...,
ofieldMnM

notifyifield1, ...
ifieldn

consumeifield1, ...
ifieldn

reply1
ofield11, ...
ofield1n1

responseM

ofieldM1, ...,
ofieldMnM

consumeifield1, ...
ifieldn

Figure 8 - SPARKL Operation Types

SPARKL orchestration is concerned with the satisfaction of transactions. Typically, this
comes down to achieving one or more goals:
• The satisfaction of a response of a Solicit operation, for the solicit->response

pattern
• The satisfaction of the inputs to a Consume operation, for the consume->notify

pattern.

A solicit operation has one or more input data fields, and one or more named
Responses each with their own field sets.

A notify operation has an input field set, but no responses. These operations are
invoked by service end-points by sending data events to SPARKL.

In the course of processing a solicit or notify event, SPARKL will invoke operations
shown on the right-hand side of Figure 8, by sending new data events to service end-
points offering these operations.

Only operations within a given mix may be sequenced together; that is Requests and
Consumes may only be used to satisfy solicit and notify operations in the same
mix.

16

SPARKL Transaction Satisfaction

consumeC
response1 response2

requestB

reply1

requestB

reply2

requestC

reply1

SPARKL sends data events to services in order to progress the satisfaction of an initial
Solicit or Notify event. It determines which services should be sent events and when by
using a graph-based approach to sequencing. We saw this in operation in Figures 3 and
4. In these figures, we represent the fields: ifield0, …, ifieldn, ofield0, …, ofieldn, as coloured
blocks.

Consider, also, the combined picture shown in Figure 9. The mix shown essentially
follows the solicit->response pattern. There are, however, consume operations
that may be satisfied along the way. When this happens, for a solicit pattern, we say
that there is leaching of the notify->consume pattern into the solicit->response
pattern.

SPARKL will use an A* (best-cost/shortest-path) search algorithm against fieldset
graphs. The graph represents the evolution of a fieldset, for a solicit transaction,
starting with the input fieldset of solicitA (shown as green and blue blocks) at the top of
the graph. Each node in the graph shows a field-set that SPARKL currently knows.

solicitA

consumeD

Figure 9 - Simple mix comprising a Solicit with Request
and Consume Operations. It shows principally the
solicit-->response pattern, with some leaching
from the consume-->notify pattern

Request operations are the edges in the graph, and, as these are executed, the current
fieldset evolves. Simply put, as we execute operations, we gather more data. In order
to satisfy a solicit event, we need to gather sufficient data for (at least) one of its
Responses.

SPARKL determines that, to satisfy solicitA, the requestB operation should be called first.
This operation is first on both paths leading to the two Responses; the search algorithm
will determine that it should be called because it sits first on the shortest path to a
response, namely, response1.

17

This requestB operation has two possible replies.
• If reply1 is sent back (as a data event) then SPARKL now has enough field data to

satisfy one of the Responses on solicitA. SPARKL sends a Response data event (with
an output name of response1) to the originating service end-point.

• If reply2 is sent back from requestB then SPARKL needs to do more work to satisfy
solicitA. From the fieldset graph, SPARKL determines that it should call requestC in
order to get field data that will satisfy the outstanding Solicit via response2.

SPARKL sequencing is goal-driven. The two leaf nodes, in the graph shown in Figure 9,
represent goal states in that they satisfy the Solicit operation.

Whenever SPARKL’s current fieldset satisfies (i.e. is a superset of, or is the same as) the
input fieldset of a Consume operation, SPARKL will invoke the operation (by sending a
data event to the owner service end-point). A node in a fieldset graph that satisfies the
input fieldset of a Consume operation is also a goal state. This is because the search
algorithm will seek out these nodes.

In Figure 9, consumeC is immediately satisfied by the input fieldset of solicitA. A simple
application of requestB may be sufficient to satisfy consumeD, in the event of reply1 being
received from requestB.

SPARKL implements an approach where, once the value of a field is known, the field
continues to have that value. Thus, field data is immutable in SPARKL. There is a way to
bring mutability in, and that is to jump between field-set graphs. In doing this, SPARKL
creates a new thread of sequencing with a fresh slate for field data, save for those fields
whose values are carried across.

Mutability is facilitated through the use of Consume operations which have Replies. The
fields specified in the Reply of a Consume constitute the field data that is brought across
to the fresh slate. Thus, field data is immutable in SPARKL unless it crosses a Consume
Boundary.

In the notify->consume pattern, we use Consume operations as goals. Some will
have replies, and when the reply occurs a new thread of execution is created. This is
often handy, with this pattern, in creating multiple threads eagerly finding way in which to
respond to the initial Notify operation.

Idiomatically, parallel threads of execution should not be created just to have a mutable
field, and should be avoided in this case. In the case of mutability, your mix should be
structured such that execution only continues in the new thread created by the consume
and ceases in the old thread. SPARKL produces an idiom guide which makes for easy
writing of mixes, following these principles.

The beauty of SPARKL is that it leaves the precise semantics for you to decide, bring
a great deal of flexibility. Along the way, we provide lots of help to enable you to write
powerful SPARKL mixes with ease.

18

sparkl.com
@sparkl

See SPARKL tutorials and demos at
sparkl.com/docs/web

SPARKL® and Clear Box® are registered trademarks of SPARKL Limited in the UK, EU and US. Portions of the SPARKL Sequencing Engine and its applications are patent pending in the UK, EU and US.
Copyright © 2017 SPARKL Limited UK Reg 07902278

Download SPARKL Now

